[repm——

NASA-TM-108129

GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT: BACKGROUND AND EXPERIENCE

215t Hawali Internatioani Confercace an System Sclences

Abstract

Goddard Space

Jaauary,

198t

. Ed Seidewitz
Code 554 / Flight Dynamics Analysis Branch

Flight Ceater

Greenbelt MD 20771 v
(301) 286-‘{631

_;:
F

/

* e effective use of Ads™ requires the adoption of modern
software-eaglaceriag techniques such ss object-arieated

methodclogies. A
Eagineering Laboratory

Space Flight Ceater Softwace
Ada pilot project has provided 2a

eppoctuaity for studying object-orieated design in Ads. The

project lavolves the development

of a simulatica system in

Ada i parallel with & similsr FORTRAN development. -AS

part of the project, the
evelusced object-oriented
methodologies for Ada
‘In various ways, the

Ads development team trained and
end process-oricated desiga
Findiag these mechodologies limited
team created a geaecal object-oriented

dev_dopmeat 'mthodolqu which they applied to the project.

oa the developmeat of

mm.mmmmm«mmm

and preseats some

1. latroductlon

4 Wﬁ&ummmm.,
hdudm(txemdcommrkonoftbeMaudFO_RmN

- T .'

The Goddacd Space Flight Center Software Eagineering
Laboratory is currearly involved ia sn Ada pilot project to
develop ¢ system of about 50,000 statements (Netson $6). This
project bas provided 28 appoctunity 0. exploce object-ociented)
softwase development methods for Ads. _The pilot system, '
kaowa ss “GRODY?, s aa attitude dynamics simulstor foc the)
Gamms Ray Observatory (GRO) spacecraft and &s based oa the
same requirements as 8 FORTRAN system being developed ia -
parallel et .]

. <
The GRODY team was inidally trained “both in the Ade
fanguage and in Adz-odeated design methodologies. The team
specifically studied the methodology promoted by Grady
Boock (Booch £3] and the PAMELA™ methodology of George
Cherry (Cherry 851 Foﬂcwintmk.dcriagtmlniuw .
&emmmmmiﬂn::mugemﬂ:wmd:w
object-ocieated design. At an early stage of the GRODY

. development effort, the team produced high-level desigas for

GRODY using each of these methodologies.

was actuslly used to develop the full

. the methodology
GRODY desiga. Section 4 describes the sesulting Ada design

Incressed productivity sad mlhbmq'fmu using Ada must

come from innovative spplication of the

aoa-traditionsl

features of the aaguage. However, past experience has showa

that traditioas! development

fes result a Ada

that "look like « FORTRAN design® (see, fos example,
(Basili 85]). Object-oriented sechaiques provide aa slternative
spprosch to effective use of Ada. As the mame {ndicates, the

Mknmkmdmkdmmm(m)

PAMELA ks g registered trademark of George

W. Cherry.

-

(NASA-TM-1C8129)
ORJECT-ORIENTED SOFTWARE
SACKGROUND AND

DEVELOPMENT:
FXPERIcNCE

(NASA)

GENER

9P

and compares it to the traditioasl FORTRAN design. Fiaally,
gection § provides some coacluding lessons-lesrned’ and
recommendations.

2. Compacison of Methodologles

MWMGMWMWNGRODY
fteam of'the Booch .PAMELAudthegem:l
‘methodology developed b All these

-
-
4
-
8
:]

Booch £7] At learmed GRODY team, Booch's
mmhdﬂuyduhutduknﬁmnaummﬂqndmmha«
&mxudduknﬂh«#ln.TEendmhyahl»udamnlu
ﬁeumuuﬂv«ulqmquﬂknkm'ﬂndmﬁrhdw
AL N33-T70957
Unclas
78/61 0136175

PRECEDING PAGE BLANK NOT FILMED

sign derive from the souns; object operatioas derive from
3 verbs. Obvicusly, some judgment must be used to
regard irrelevant aouns angd verbs and to trasslate the
naining concepts into design objects. Once the objects have
en identified, the design can thea be represeated
igrammatically using s aotation which shows the
peadencies between Ada packages sud tasks which
plemeat the objects.

¢ Booch design, methadology contains all the basic
unework of the obiect-odented spprosch. However,
- plication of this methodology 9 GRODY indicated that it
smmdnymﬂabkwwblesystew. The team found
y graphicel aotrtion cletr but mot detsiled or rigorous
ough. Further, Booch gives mo explicit method for
. gramming & hierarchical decomposition of ob,ecu. which is
aded for sny sizable system. Booch's motation does not,
_ refore, seem to0 be & complete design motation. Note,
wever, that in more recent work Booch has exteaded the
&dﬁemmmmwmofmmminu
: 871

tecond difficulty of Booch's methodology is ia the technique
~ "deriving the desiga from the specification text. This works
Il whea the specification caa be written concisely in a few
- graphs. However, whea the system requirements are large,
wu.h GRODY, this can be difficult. In sdditica, any
emptmmsuchuuchmucdmcdyona:equimms
: wumeat such as ours I doomed to failure due o the sheer
- & snd complexity of the document. Resalizing such
- whacks, Booch no Jonger sdvocates the use of this textual
" thod, which was acter sctually intended foc farge systems
relopment (Booch 86b]. Instesd, he decives sn object-
eated design from & data flow disgram based specification
wch $6e, Booch £7} However, from the published

mbhkmumkwummuymly&sf

:hodumdcucmuus.

.PAMELA

& secoad methodology considered by the GRODY team was
1 Process Abstractioa Method (or Embedded Large

- wplications (PAMELA) developed by George Cherey

- werry 85, Cherry 861 PAMELA is ocieated soward ceal-
uud«nbeddcdml’mm is process-eoriexted, $0
PAMELA design coasists of & set of lateracting concurrent
xesses, A well designed process is effectively & concurreat
joct, thus PAMELA is object-ociented in a'general way.

- JMELA wuses a powerful graphical motation without the
* twhacks found ia Booch's aotatioa (Cherry §6]. During the

JELA design processes, the desigaer successively
" 0@mpates processes into coacurrent subprocesses until bhe
 ches the level of primitive gingleethread processes. The
. WODY team found thet PAMELA provides faidy explicit
"~ tristics foc constructing good processes. The designer uses

se hints 90 coastruct the sop-level processes from the system
_ cificatioa. The designer thea recursively decoaiposes each
'|-9rimmwpmutﬂonlypummnpmmh.

1 peimitive processes can thea be coded-ss Ada sies with &

single thread of coatrol. Non-primitive processes are simply
uchgaofbwkvelpmmdthueonmmulupu
threads of coatrol.

PAMELA's heuristics can be very effective whea designing & ‘

seal-time system that is hesvily drivea by extermal™
uynchmnou sctioas. la other cases, however, they require
considerable interpretation to be applicable. Although parts of
GRODY might conceptually be concurrent (because GRODY -
simulstes sctioas that happea ia parallel in the real world),
there & 80 requirement for coacurreacy in the simulation of
these sctions beczuse GRODY does not have to interface with
any active external entity (except the user). In addition, since
GRODY runs on s sequential machine, the overhead of Ada
tasking and rendezvous could greatly degrade the time
pecformance of the system. Thus, one mmvneuuon of
PAMELAY pnncxplet might feave very large sections of
GRODY a3 primitive single-thread processes, with oaly a few
concurreat objects ia the eatire design. To proceed further ia
the decompositioa, the designer has t0 rely more oa incuition
nboutwwm:(oodob;ectmdulylasouthe
methodology Ia fact, &t the time that the GRODY team was
using PAMELA, it provided no support for the deoomposmou
and design of aaything below the level of the primitive
process, aa Ada task (Cherry 85) Since thea, Cherry has
sdded several concegits o the methodology, including the use
of abstract data types (Cherry 86]. However, the methodology
remaing weak for systems with a small amount of concurrency
which are still to be designed in an object-oriented fashion.

236G [Obiect-Ori { Devel
As 1 cesult of the sbove experiences, the GRODY team
developéd its own object-ocicated methodology which attempts

0 capture the best poiats of the object-ociented spprosches
studied by the team sg well s traditioas! structured

. methodologies (Sesde\vx(z L6z, Seidewitz 87b, Sack 87]. It ks

designed to be quite general, giving the designer the flexibility
t0 explore design alternatives easily.
priaciples that guide the designer in constructing good object-
oticated designs. This methodology was used to develop the
complete detailed design (or GRODY.,

This geners! object-orieated developnen((*GOOD")
methodology is besed oa general peiaciples of abstraction,
hfomuoulidmuddmuﬂuucﬁydmwedhtbeuxt
section, These principles sre less explicic thaa Booch's
methodology or PAMELA, buat they do provide & firm
paradigm for generating and evalusting an object-orieated
design, ladeed, as meationed above, the team found the Booch
and PAMELA design coastruction techaiques restrictive, often
mecestitating the designer ®0 rely oa intuition for object-
ocicated design. The GOOD methiodology s an attempt ©
codify this tatuition int a basic set of priaciples that provide
guidaace while teaving the designer the flexibility %o explore
various design approaches.

In addition, we have siso coasidered, independeady of Booch,
the traasitioa from structured saslysis ([DeMarco 79] oo objoct-
orieated desiga ia the context of the GOOD methodology.

OF POOR Q iiL'TY ’

It is also based oa -

" .!‘l ~— !“'"’) =
J e e oW -

-

Halis

.v-urv

LJUT..’“\-

developing 8 techaique kaown as abstraction analysis

itz 86a, Seidewitz 86b]. This techaique is analogous to
transform and transaction anslysis used in structured design
(Yourdon 78] However, prqoeeding into object-oriented
design from 4 structuréd analysis, by whatever means, requires
an “extraction® of problem domain eatities from traditioas!
data flow diigrams. From sa object-orieated viewpoing, it
seems sppropritte o instead begin & specification effoct by
identifying the entities in 2 problem domaia snd their
interrelationships. Study is continuing ea iscluding such
object-oricated system specification techiniques in the GOOD
methodology and on applyiag object-oriented principles
throughout the Ada life cycle (Stark 87].

3. The GOOD Methodology

As & result of the comparison discussed in section 2, the
GRODY team decided to spply the GOOD methodology 10 the
full GRODY design. This section provides an overview of the
principles 10d notation used during the GRODY desiga.

1.1 Designing with Obi

The intent of sn object is t0.represent & problem domain
eatity. The coacept of abstraction deals with how an object
presents this crepreseatation to other objects [Booch €6b,
Dijistra 68). Ideally, the objects in 1 desiga should direcy
reflect the problem domain eatities ideatified during system
specification. However, various desiga considerations may
require splitting or grouping of cbjects and there will almost
slways be sdditional objects in 1 design to handle “executive”
and “utility® functions. Thus there is & spectrum of levels of
abstraction of objects in & design, from cbjects which closely

model problem domaia eatities to objects which relly have 8o - -

resson foc existeace (Seidewitz $6b]. The (ollowing are some
points in this scale, from strongest 10 weskest L
Entity Abstraction - An object represents & useful tmodel of &
problem domain eatity or class of eatities.

Action Abstraction - An object provides a generalized se¢ of
opecations which all perform similar o related functioas (this
similar to the idea of & “wtility” object in (Booch $7).

Subsvstem Abstraction - An object groups wgether 8 set of
objecsudomﬁouwhkhmauuhtednawedﬁcm
cfnhnermmu(u\kkdmﬂuumwm'cowh
(Booch &7]).

The stronger the abstraction of aa abject, the more details are
suppressed by the abstract coacept. The priaciple of
u/m«wwmmmmmuwm
(rom other objects [Booch 87, Parnas 79], 20 as to better
preserve the abstraction modeled by the abject.

mpdndpluotabsmdonmwmdouudingm%
the main guides for creating “good® objects. These objects
must then be coanected together 1o form sa object-ocieated
design. This design is represented wsing & graphical ebject

~="diagram gotation (Seidewitz $6b]. Similarly to Booch's

notation, object diagrams show coatrol flow aad module
depeadencies between objects. However, they can be
hierarchically leveled as with PAMELA's process graphs.

The coastruction of an object-diagram-based design is
medisted by considecation of two orthogonal -hiecarchies in
software system designs (Rajlich 85]. The composition
hieracchy deals with the composition of larger objects from
smaller component objects. The semiority hierarchy deals with
the organization of ¢ set of cbjects into “layers”. Each layer
defines 8 virtual machine which provides services to seaior
fayers {Dijkstra 68]. A majoc strength of object dizgrams is
that they can distincty represent these hierarchies.

The composition hierarchy is directly expressed by leveling
object diagrams (see figure 1). At its top level, 2ny complete
system may be represeated by 8 single object which iateracts
with external objects. Begianing at this system level, each
object can thea be refined into component abjects on s lower-
tevel object diagram, designed to meet the specification foc the
object. The result is a leveled sec of abject diagrams which
completely describe the structure of asystem. At the lowest
Jevel, objects are completely decomposed into primitive
objects such ss procedures and internal suate daa stoces. At
figher fevels, object diagram leveling can be used in & manner
similar to Booch's “subsystems® (Booch 87).

FIGURE 1 Composition Hierarchy i

The senlority hierarchy & expressed by the topology of
coanections ot a siagle object disgram (see (igure 2). Aam
areow becween objects Indicates that one object calls one or
more of the operations provided by another object. Aay layer
ias mh&qki«uwhyanaﬂoauyopend«hicm
hmbmmuyopenﬁouiutudovhm.ﬁu.lu

relationships between objects must be coantsined within
tl machine layer. Object disgrams are drawn with the
ty hierarchy shown verticylly. Each senior object can be

) edniftbeopendonsmvidedbyiuniofhmm
jve operations” in 2a extended languige. Each victual

3¢ fayer will generally coataia severai objects, each
ied according to the principles of sbstractioa and
ution hiding.

WTERFACE ¢

g

~ 7\
N7\

4N\

FIGURE 2 Seniority Hierarchy

siening Svstems

1ain advaatage of & seajocity hierarchy is that it reduces

 wpling bemobkcu.ﬁkkbeamtuobjewiuou
,lmchinehyuneedtotnownomiulbouunior
. Further, the ceatralization of the procedural and daua
coatrol ia senior objects can make 1 system easier 0
stand a0d modify.

w.thkmyeeuuﬂhﬁocanamtmybotdeneck.
:amumqudmmﬂumw
jualor levels. The impoctaat poiat i
,tcmﬁdtbemiodtytieamﬁyhadamanbe
) afma:pmwofpoax‘bﬁidu.wiﬁubmdaiu
myuiubuwu&emnkgmum
~ power and Qexitility la sdapting system desigas %
fic applications.

example, coasider & simplified sttitude dynamics
_‘stion

dedyuniatimuhmnodckdwr«dludmdono(
- pececraft
craft control system. The problem domain for such &
nhdmmemdmv&ouwgwwmwmml
pacecraft, seasors to determine the curreat atticude, etc.

system similae 00 GRODY. The artitude of 1 .
" eraft is It oricantion relative w0 lnertial cpsce, and sa -

hmwmﬂd&w&mmm,

M«dd«hwmmﬁmﬁtmawmumhc

control Yoop outlined in figure 3.
L_JK‘ : _J

LECOND
*AOCTS O

SATA MLOW O—o

FIGURE 3 Attitude Dynzmics Problem Domaia

Figure 4 shows one possible preliminacy desiga foc the
ATTITUDE SIMULATOR. For simplicity, the seasocs and
thrusters are represeated by g single *SPACECRAFT
HARDWARE" object in figure 4. Note that, by coaveation,
the agrow fabeled "RUN" is the initial iavocation of the eatire
system. Ia preliminary design diagrams such as figure 4, it &s

{ ¥ show. what daa flows aloag cecttin
control arrows, muach ia’ the manner of structure charts
(Yourdon 78] o "Buhe chares” (Bube $4]. These aanocations will
a0t sppear oa the (inal object dugrams.

=

ATRTVH| G

e

X
|

14

” FIGURE 4 Ceatralized Design

ORIGINAL PAGE IS
OF PODR QUALITY

r

(LR

In figuce 4, the junior level componeats do mot interact
directly. All data flow between junior level objects must pass
mmmmwm.mmmwmmmm
mwmmm(fo?mudtymaﬂmwk
shown ia Cigure 4). This desigh is somewhat fike sn object-

orieated version of the structured designs of Yourdon and

Coastantine (Yourdon 78].

We can remove the data flow coatrol from the sealor object
- gnd let the juaior objects pass data directly between
themsatves, using operations within the virtus! machine layer
(sce figure 5) The senior object has been reduced to simply
sctivating various operatioas ia the virtual machine layer, with
very litde daaa flow.

G

VHAUSTER TRETEN
Ww

|

274

TORAUL
ATTIIVOC
STATE GATA
CRNQ
©OMAD

" FIGURE § Design with Deceatralized Data Flow

We cin even remove the seaior object completely by
distributing control among the junior level abjects (see figdre
6). The splitting of the RUN coatrol arrow ia figure 6 means
that the three objects are sctivated simultancously and that
they run concurrently. The seaiority hierarchy has collapsed,
leaving & komalogous oc non-hierarchicat desiga (Yourdon 78]
(no scu!;wfty hiecurchy, that is; the compositioa hierarchy still
remzias

A design which is deceatralized like figure 6 at all
composition levels i very similar 10 what would be produced
by the PAMELA methodology (Cherry $6). In fact, it should
be possible ¢t apply PAMELA design criteria 90 the upper
fevels of an object disgram based desiga of a highly
concurrent systeat. All coacurreat objects would thea be
composed, st & certein level, of objectt represeatiag certain
process “idioms” (Cherry 86]. Below this level concurreacy
would geaerally no loager be advaactageous.

To complete the design, we need 0 sdd @ virtual machioe
hmo(ndﬁtyob}ecuvﬁid\pmmwoftbsmcdon

of the problem domaia eatities. In the case of the ATTITUDE
SIMULATOR these, objects might faclude VECTOR,
MATRIX, GROUND COMMAND aad simulacion
PARAMETER types. Figure 7 shows how these objects might
be added to the simulator design of Figure 4. .

-,

THAMETER THAUETER
TOAGUE
arnTvoe -
o e CONTROL
- A=N=NII(f —] _J
STATX (7T
I“mw('
sTATC . mI
v
I
COMMANGD

FIGURE 6 Decentralized Design

Figure 7 gives onc complete level of che desiga of the
ATTITUDE SIMULATOR. Note that figure 7 does aot iaclude
the data flow arrows used in easlier figures. Whea thece are

- gaveral coatrel paths oa & complicated abject dizgram, it

fapidly becomes cumbersome to show data flows. lastead,

“ object ‘descriptions for each object oa & diagrnm provide

details of the data flow.

AVARLEA

FIGURE 7 Attitude Dynamics Simulator Design

An object description includes s list of all operations provided
by an object and, for each arrow leaving the object, a list of
operstions used from another object. We caa identify the
operations provided and used by each object in terms of the
specified data flow and the desi§ned coatrol flow. The abject
description can be produced by matching data flows w0
openations. For example, the description {or the ATTITUDE
DYNAMICS object in Cigure 7 might be:

Provides:

procedure Initialize;

procedure Integrate (Foc_Duration: la DURATION);
procedure Apply (Torque: la VECTORY,

fuaction Curreat_ Attitude retura ATTITUDE;
function Curreat_Aangular_Velocity

.setura VECTOR;

Uses:
5.0 LINEAR ALGEBRA
Add (Vector)
Dot
Multiply (Scatar)
Moultiply (Matrix)

6.0 PARAMETER DATABASE
Get .

We could next proceed to refine the objects used ia figure 7
and recucsively coastruct lower level object diagrams. These
lower level designs must meet the functionality of the system
specification and provide the operations listed in the object
description. The design process coatinues recucsively until the
eatire gystem is designed aad all .objects 2re completely
decomposed.

{ } E
Lx) 1. X
- CURERT CHRAOX uTIALITE Y
eLoay

Lt
:

FIGURE 8 Atitude Dynamics Object Composition

For example, figure § shows the composition of the
ATTITUDE DYNAMICS object. The component object
ATTITUDE INTEGRATOR is the instntiation of a generic
INTEGRATOR object which takes the (unctioa to be
integrated us a generic pacameter, The generic object ks
instantiated in figure § with the ATTITUDE EQUATION
.subprogram as the generic sctual parameter. Most of the
ATTITUDE DYNAMICS openations are shown in figure § as
componeat procedures, represented by rectangles. The
*Integrate” operation, however, is directly Inkerited from the

ATTITUDE INTEGRATOR object.
34 Imolementation

The transitioa from an object disgram to Ads is
straightforward. Package specifications are derived (rom tie
tist of operations provided by an object. For the ATTITUDE

DYNAMICS object the package specification ic

package Actitude_Dynamics Is

subtype ATTITUDE Is Linear_Algebra. MATRIX;

-

procedure [nitialize;
proceduce Integrate T
(For_Duqtion: la DURATION), ¢ _
procedure Apply -
{ Torque : {a Linw_A!'gebn.VECl' OR);

fuactioa Current_ Attitude

retucn ATTITUDE;
function Current_Aagular_Velocity
- retura Linear_ Algebca. VECTOR;

"~ ~ead Dynamics;

The package specifications derived from the top level obj
dizgram can cither be made library units or placed in the

g

fevel object diagrams the mapping is similar, with compoaent
package specifications being nested in the package body of the
composite object. States are mapped into package body
varisbles. This direct mapping produces s highly aested
program structure. Alteraatively, some ocr all of these
packages can be made library uaits or evea reused (rom ga
existing libcary. However, this may require additioaa! packages
0 coatzin daty types aad sute variables used by two or more
tibrary unies, ~

The process of transforming object diagams to Ada &
followed down all the object diagram levels uatil we resch the
level of implemeating individual subpcograms. Low-level
subprograms caa be designed and implemented wsing
traditions! Cunctional techniques. They should generally be
coded as subunits, rather chan being embedded in peckage
bodies.

As mentioned in subsection 33, Acticude_Dymamics inherits
its “Integrate” operation from a component object. Smalltalk's
subclassing (Goldberg 83] provides an elegant mesns of

supporting iaheritance. Ada does not directly support
inheritance, but the concept can be simulated by using “call-
throughs™ A call-through i & subprogram that has lictle
function other thaa to call oa faother packsge's subprogram.
To simulste inhesitaace whea implemeatiag the
Attitude_ Dynamics package the subprogram lategrate would
be respecified in the Attitude_Dynamics package, with the
sobprogram body ia Attitude_Dynamics calliag oa the
cocresponding operation from Attitude_[ategrator.

This technique is clearly less elegant’ than Smallealk
gubclassing, but it aiso has sdvantages. First, Ada allows
inheritance from more than one object. Second, Smalltalk
forces the inheritance of all operutions and datz. Aa operation
can be overridden, but aot removed, from a class, The Ada
specification of the composite package gives the developer
precise control over which operations aad data iems are
wvisible oc accessible. (See (Seidewicz 87) for & more detailed
discussion of Ada snd the concept of inheritance.)

The clear definition of abstract interfaces in sa object-
otiented design c1a tlso greatly simplify testing. Whea testing
s object, there i a well defined “virtual machine® of
operations it requires from objects at & jusior fevel of
sbstraction, some of which may be stubbed-out {oc initial
testing. Further, object-oriented composition encourages
{acremental integration testing, since the “uait testing® of a
composite object really coasists of “integration testing® the
component objects at 1 lower level of abstraction.

4. Applicatioa to GRODY

As Jirt of the GRODY project, & detailed assessment has beea

made of the team's experiences during desiga (Godfrey §7] At
this time, however, mast of the observations must remaia
qualitative, Nevertheless, it is clear that the GRODY design s
significandy differeat from previous FORTRAN simaulatoc
designs {Agresti 86]. .

ma«m«uumgmumuuwcuumumme
ia previous simulator and ground suppoct system designs. [t

parameterization, is eaticely though & set of global COMMON
aress,

Since GRODY was derived from the same basic requirements
as the FORTRAN design, there are similacities in che designs
of the two systems. However, there are afso some {undameatal
differences in the GRODY design that can be traced o the
object- ocieacted methodology. Figure 10 is an object disgram
of the main part of the GRODY desigp. This desiga ks gimiler
%o the example design of figure 7. However, th GRODY team
chote to combine the ATTITUDE DYNAMICS and
SPACECRAFT HARDWARE objects into 8 single TRUTH
MODEL object, similar 0 the corresponding subsysiem ia the
FORTRAN design. Further, {a GRODY the LINEAR
ALGEBRA" functicas sre part of & UTILITIES module mot
showa in figure 10.

FIGURE 10 Ads Simulator Design

Unfike the FORTRAN design, coasideratioa of the sealority
hicrerchy in the GRODY design fed the GRODY team 9 place
the TRUTH MODEL at a fevel junior t0 the SPACECRAFT
CONTROL. The TRUTH MODEL is thus e{fectively passive,

with the SPACECRAFT CONTROL calling on opecttions as —~

needed to obtain sensocr data and activate sctuacocs. All sensor
gad command data is passed using these operations.

The simulation timing of GRODY is alse diffecent (com the
FORTRAN design. The object-oricated methodalogy led to
consideration of a *“TIMER" object in GRODY which provides
an abstraction of the simulatida time. This utility object
provides & common time refercace for the SPACECRAFT
CONTROL and TRUTH MODEL separate from the
SIMULATION CONTROL foop. Ualike the FORTRAN
design, In GRODY the “cycle times” of the SPACECRAFT
CONTROL end TRUTH MODEL are 6ot the same. The
GRODY team chose to faithfully model, in the SPACECRAFT
CONTROL abstraction, the timing of the actua! spacecraft
coatrol which is not under ucer control. However,
GRODY allows the simulation user to set the cycle time for
the TRUTH MODEL over a (airly wide range, o allow the
user t0 trade-off speed and accuracy as desired, e

Fiaally, the PARAMETER DATABASE aad GROUND
COMMAND DATABASE objects eacapsulate user sectable
parameters (or the simulatioa, Similar dacz & coatzined ia
COMMON blocks ia the FORTRAN design. This
- eacapsulaton of “global® data it cypical of object-oricated
- designs. It provides both incressed protection of the daa
- encapsulated and incressed opportuaity for reuse. For example,
the simulation parameters Ia the FORTRAN design ace
COMMON block parameters which must be hard-coded iato
. the user inter{face code. (Foc simplicity the user faterface
modules have not beea included in the design dizgrams here.)
. In the GRODY desiga, simulation pacameters ace identified by
eaumerstion constants, which allows the user interlace displays

%0 be parameterized by external data files. This should geeady
- incresse the reusability of the user interface.

42 Experi ith the Methodal

The differences discussed above could probably have been
incorporated Iato the FORTRAN desiga. However, it was
targely the influeace of the object-oriented approach which
mw their eoal:denuon for GRODY whea they had not

coasidered in several previgus designs of simutators for
FORTRAN. Coasidenations of eacapsutation and reusabilicy
indicate that the GRODY desiga mey be “better” than the
FORTRAN design. This &, of course, the goal of object-
mmmmw.mmmdlhemﬁnofm
SRODY desiga will oaly come from coatiauing studies of the
omparative maiatainability of the FORTRAN and Ad:
Imulators.

nwd&emmodobgyw.memround&eobjm
Qagram aotstioa extremely uwseful for discusting the design
luring development. Further, the aotstion provided complete
'bcumﬁono(ﬁedu&audmuﬂomdtpedﬁauy

he object diagram motation evolved considerably ducing the
RODY project in response 10 continuing experieace with jes

use, The lack of & specific mcxhodok;gy at the start of the

GRODY project was & problem for the team, s was the
coatinuing evolution of the methodology over the durauo:_: of
the project. Further, the fact that managers were 6ot fumlm-
with the new methodology made the use of object dizgrams
difficult at reviews. Another problem was that the detai of
the object diagrams aad'!the emphasis oa keeping the
documeantation up-to-date required s lot of effort for
maintaining & rather large design notebook. The team clearty
siw the grest noed for automated tools © SUPPOCt the
um«buh&kmauid«adonkakobe!uﬂvu'u
how to extead the object disgram actation to bettér cover such
topics as generics, abstract daa types sad large system
components.

5. Coaclusloa -

The GRODY project has provided an extremely valuable
experience ia the application of object-arieated principles to &
rexl system. This experience guided the creatioa of the GOOD
methodology which is now being used oa aa incressiag aumber
of projects inside snd outside of the Goddard Space Flight
Ceater. As with any pilot project, some of the major products
of GRODY are the lessons learned along the way. Some
specific points oa the methodology used In GRODY are
(Godfrey 87}

- The design methodology should be chosen 35 early as possible
$0 that the team caa be trained in this méthodajogy and so that
time will aot be wasted tryiag to usé sa _uasuitable
methodology.

- The methedology chosea must exploit important Ada
features such as packages, tasks and genecics,

- Object diagrams wece & very suitable represeatation for the
GRODY design.

=.-The GOOD -methodology seems to be aa extremely usefut
method for system design. .

= Compilable design glemeats developed in Ada ere “very
useful for providing validation of the design 25 well a5 foc
documeacatioa. :

It afso became clear during the GRODY project that the
GOOD methodalogy does aot fit comfortably iato the
mdidonaui(ecydemgemtmodeLAtuwylua.tbe
mew?uwmmhnmmw

& suppocted by the well-defined modularity of sa object-
ociented design.

-

o

e B

The traditionsal functional viewpoint peovides & compreheasive
framework for the eatire software life-cycle. This viewpoint
reflects the sction-oriented natuce of the machines on which
software is run. The object-ogented viewpoiat, however,
reflects the natural structure of the problem domain rather
than the implicit structure of our hardware, Thus, it provides a
“higher-level” approsch to software developmeat which
decreases the distance between problem domaia aad software
solation. By making complex software easier to understand,
this simplifies both system development aad maintenance, Our
experience with GRODY forms the basis for Cruitfully
spplying this spproach to future Ada projects.

References

(Agmu £6)
Agresti, William W, et. al. 'Dengnu:g with Ada for Satelhte
Simulation: & Case Study.

. June

1986.

{Basili §5)
Basili, V. R., et. al. *Charactecization of an Ada Software
Developm_t.' Comouter, September {98S.

{Booch 83]

Booch, Grady. Software Engineerine with Ada,

Beajamin/Cummings, 1983.

[Booch 86a]

Booch, Grady. "Object-Orieated Software Development,” [EEE

Transactions on Software Engineering, February 1986,

{Booch 86b] -

Booch, Grady. Software Engincering with Ada, 2nd Editjon,

Beajamin/Cummings, 1986,

{Booch 87)

Booch, Grady. w wi
mn/&mmwgs, 1987.

(Buhe 84])

Bube, R. J. A. §ystem Design with Ada, Preatice-Hall, 1984,

{Cherery 85]

nghsest‘ry. George W. PAMELA Course Notes, Thought**Tools,

{Cherry 86]
Cherry, George W. PAMELA Designer's Handbook,
Thoughc**Tools, 1986.

|

{Dijkstra 68]

Dijkstra, Edsgar W, “The Struc:ure of the *THE®
Multiprogramming System.” Communications of the ACM,
May 1968,

[Godfrey 87]
Godfrey. Sara, Carolyn Brophy, et al,

Document SEL-87-004, {uly 1987.
(Goldberg 83]

Goldberg, Adele and David Robsoa.
Languzge and Its Implementation, Addison-Wesley, 1983

GSFC

| [Nelsoa 86}

Nelson, Robert W. *NASA Ada Experiment.-- Attitude
Dynamic Simulator,” Proceedings of the Washington Adz
(Parmas 72]

Paranas, David L. “On the Criteria to be Used in Decomposing
Systems into Modules,” Communications of the ACM,
December, 1972, '
{Rajlich 5]

Rajlich, Vaclav, *Paradigms for Design snd Implementatioa in
Ada” Communications of the ACM, July 1985.

(Seidewitz 86a]
Seidewitz, Ed and Mike Saark. “Towiards a General Object-

Oneated Sot'tware Development Methodology.” Proceedings of

Space Station, Juae 1986,

{Seidewitz 860}

Seidewitz, Ed and Mike Sark. General Obiect-Oriented
Software Develooment, GSFC Documeant SEL-86-002, August
1986.

{Seidewitz 87]
Sesdevmz. Ed. “Object-Oricated Programming in Sanﬂulk 2nd

{Stark 87]
Stark, Mike and Ed Seidewicr. 'Towds a Genernal Ob;ect-

Orieated Ada Ltt'ecyc!c.
March 1986.

{Yourdoa 78}
You.tdon. Edward aad Larry L. Coastantine. Structured

and Systems Design, Yourdoa Press, 1978.

P

